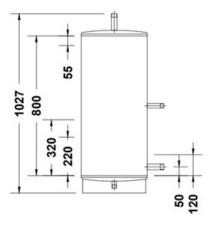
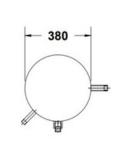
DADOS TÉCNICOS

KIT DE PRESSURIZAÇÃO THP 100L

- · Tambor interno em cobre;
- Temperatura máxima 85ºC;
- Pressão máxima de trabalho 8 kgf/cm²;
- Alimentação 220 V bifásico;
- · Aquecimento elétrico 9 kW;
- Controlador de temperatura digital;
- Sistema de pressurização;
- Controlador de pressão digital;
- Sistema de recirculação de água na prumada;
- Potência total com aquecimento elétrico 9 kW.

D	Dimensões (mm)						
Comprimento	Largura	Altura					
1000	600	1200					


	Peso Teórico
Г	Kg
Γ	89,0

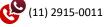


COMPONENTES

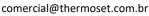
Gama de Produtos:

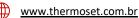
0169261 Kit de pressurização THP 100L 9,0 KW 220V 8,0 BAR

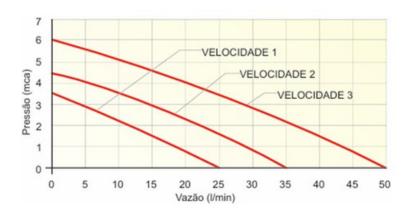
- Tambor interno em cobre;
- Isolamento de espuma expansiva de poliuretano;
- Acabamento pintura branca eletrostática;
- Acumulação 100L água;
- Pressão de trabalho 8kgf/cm²;
- Pressão de teste 12kgf/cm²;

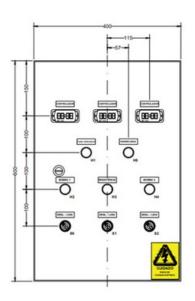


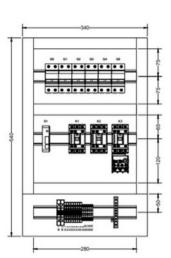
FSP 80-1 1,5 cv

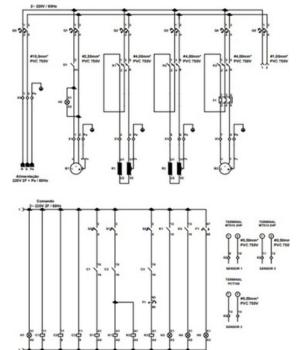

- Vazões até 3,24 m³/h
- Pressão máxima de 76,0 mca
- pH de 5 a 9
- Motor monofásico 110/127 V ou 220 V
- Motor trifásico 220/380 V

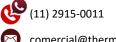

Modelo		Potência nominal		Diam. rotor		H = Altura manométrica (mca)															163		
					2	4	6	8	10	12	14	16	18	20	25	30	35	40	45	50	55	60	1
		kW	cv	mm	Q = Vazão (m³/h)													l					
0	FSP/FASP60-1	0,37	0,5	60	2,62	2,42	2,24	2,06	1,88	1,71	1,54	1,37	1,2	1,04	0,58								Ī
0	FSP/FASP80-1	0,75	1,0	76	3,24	3,01	2,81	2,62	2,45	2,29	2,14	1,99	1,85	1,72	1,39	1,06	0,75	0,45	0,16				Ī
0	FSP/FASP80-1	1,1	1,5	76	2.5	2,41	2,32	2,22	2.14	2,05	1,96	1,87	1,79	1.71	1,51	1,31	1,12	0,94	0.76	0,59	0,42	0,26	Ī


DADOS TÉCNICOS


<u>TBHWD-BR • 100W •</u> 220V


- Potência de 100 W
- Tensão 220 V
- Temperatura da água de 5°C a 80°C
- Pressão máx. na sucção de 100 mca
- Vazão máx. 50 l/min
- Uniões 1" F x 3/4 " M
- Peso 2,4 Kg
- Tubulação SUC 1" REC 1"


DESEMPENHO


DIAGRAMA LAYOUT DO QUADRO

DADOS TÉCNICOS

<u>Paraostestesdeestanqueidaderealizadosdevem-seatenderasnormasdescritas abaixo:</u>

ABNT NBR 5626: 2020

7.3.1 Ensaio de estanqueidade das tubulações

- 7.3.1.1 O ensaio de estanqueidade deve ser realizado de modo a submeter cada seção da tubulação a uma pressão mínima de 600 kPa (60 mca) ou 1,5 vez a máxima pressão de trabalho, o que for menor.
- 7.3.1.2 O sistema é considerado estanque caso não sejam detectados vazamentos ou queda de pressão manométrica por um período mínimo de 1 h após a estabilização da pressão. O manômetro utilizado deve ter precisão e escala compatíveis com o valor da pressão de ensaio.
- 7.3.1.3 O ensaio de estanqueidade em tubulações do sistema predial de água quente deve ser realizado com água com temperatura mínima de 80 °C, antes da aplicação de eventual isolamento térmico ou acústico ou antes de serem recobertas.

ABNT NBR 15569: 2020

11.2 Verificação de estanqueidade

Antes da realização do ensaio de estanqueidade do circuito primário, todo o ar deve ser purgado.

Antes do início de utilização e da instalação do isolamento térmico nas tubulações, a estanqueidade do SAS deve ser verificada na sua pressão de operação por meio de ensaio hidrostático.

Os vazamentos, se existentes, devem ser corrigidos e o SAS ensaiado novamente.

Garantia:

Vazamento → Tanque interno do reservatório 5 anos Demais Itens → 1 ano contra defeito de fabricação.

